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• Goal: improve NSTX-U shape controller

• Previous controller experienced difficulties
• oscillations, sensitivity to gains, loss of control

• Target upgrades:
• Add feedforward capabilities and feedforward design tool
• Improve integration with Ip-controller and vertical stability controller

Motivation

[Boyer, 2018]



Feedforward trajectory design
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• Method requires only target shapes and 
estimates of a few scalar plasma parameters
• Inputs: target Ip, target shapes, estimated Te, 

estimated Wth, estimated li
• Results are not too sensitive parameters

• Steps:
• solve for equilibria at a few times
• use coil/vessel/plasma dynamics to solve for 

ohmic and vessel currents
• lock vessel currents and ohmic currents and 

repeat

• Recurrent neural networks show promise in 
predicting these scalar parameters based on 
actuators [I. Char, Carnegie Mellon University]

Feedforward (FF) design tools maps target shapes to currents

FF trajectories based on 
shot 204660

Parameter predictions trained on heating & current drive actuators



Vertical stability analysis
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• Shape model is based on circuit equation, 
applied to toroidal elements in the tokamak

• Vertical instability is represented by a
positive eigenvalue of A

• Analytic theory indicates proportional-
derivative control is needed to stabilize 
system unless elongation is low [Humphreys 
1989, Lazarus 1990]

• Theory also suggests presence of right-half-
plane (RHP) transmission zeros

Circuit dynamics model gives insight into vertical stability

Zero: “values of s for which u and x 
are nonzero, but y is zero”

drops rank
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• RHP zero in plasma position response is
exactly the RHP zero in the vacuum field Br 
response [Pesamosca 2021]

• On NSTX-U, the zero exists for PF1 and PF2 only 
due to vessel shielding

• Fast timing (> 1kHz) suggests PF1 and PF2 are 
still fast enough to be used for vertical control

• Identified stable region for controller Kp, 
Kd values

Stabilizing region for vertical controller identified
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Shape and current-tracking
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Vertical instability introduces a RHP zero to the PF current control loop

• “Closing the vertical loop” results in a RHP zero 
to the current/shape control loop

• Fundamentally related to the vertical instability and 
has same timescale (10-200 Hz)

• In general, only solution is to reduce controller 
agressiveness (bandwidth)

Gives approximately: 

The zero is a perturbation to the solution of (sI-A)=0, the poles of A 

The input zero direction (u0) is ~ the vertical control input direction 
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• Input direction u0 = null(G)

• Output direction y0 = null(G’)

• Force actuation to be orthogonal to input 
zero direction, or force coil tracking errors 
to be orthogonal to output zero direction

• Misalignment between input and output 
zero directions indicates the VS controller 
would improve by adding PF1/PF2. 

Numerical calculation of RHP zero shows alignment with vertical 
instability
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• Similar to the eXtreme Shape 
Controller at JET [Ariola 2005]
• Dynamic performance is mostly a

function of the current controller
• current control dynamics

• shape dynamics 

• flexibility: design dynamic response 
independent of shape targets and 
shape scenario

Full controller is based on current-following + shape error mapping
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Surprisingly, PID current-tracking performs on-par with MIMO methods

• Highest coupling is between OH coil 
and PF1AU/PF1AL which are directly 
adjacent

• Apply a step reference change in Ip
• PID tracking rejects disturbance

~ 30ms
• LQI and LQR can give some

improvements/tradeoffs

PID

LQI

Velocity-form LQR
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• This map is equilibrium dependent, 
linearization of the Grad-Shafranov
equation
• Precompute a-priori based on target equilibria
• Simpler “rigid” model is real-time capable 

although not routinely used
• Use plasma response neural network 

(Pertnet) [Wai 2022]

Map from shape errors to currents is the “plasma response”
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• On JET XSC shape-to-current mapping is regularized 
using SVD [Ariola 2005]
• Only retain the first few singular values

• Interpreting matrix inversion is intuitive for 
including feedforward, some types of constraints

• Include weighting matrices, regularization, and 
constraints

Shape-to-current mapping can be used for constraints, including 
feedforward 

min:
subject to:



16

• Recreate shot using original PCS controller
• experiment-level disturbances and noise
• undesired USN-LSN bobble occurs while 

diverting
• radial position oscillations
• Ip oscillations (higher than actual

experiment)

Nonlinear simulations performed using gsevolve [Welander 2019]
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• Use feedforward method to design coil 
current trajectories 
• feedforward reduces PF1 currents while 

diverting, removes USN/LSN switching

Nonlinear simulations performed using gsevolve [Welander 2019]
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• Design feedforward to divert the plasma
earlier (t=230ms à t=110ms)

Nonlinear simulations performed using gsevolve [Welander 2019]
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• Developed feedforward design tool and 
compatible shape controller

• Improve integration with vertical stability 
controller

• Simulation results show better control, new 
capabilities (e.g. divert earlier)

Summary
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