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Motivation

* Goal: improve NSTX-U shape controller 2 |

* Previous controller experienced difficulties
 oscillations, sensitivity to gains, loss of control L

* Target upgrades: Control grid
* Add feedforward capabilities and feedforward design tool contret e ™
* Improve integration with Ip-controller and vertical stability controller 5 S——
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Feedforward trajectory design



Feedforward (FF) design tools maps target shapes to currents

* Method requires only target shapes and
estimates of a few scalar plasma parameters

* Inputs: target Ip, target shapes, estimated Te,
estimated Wy, estimated li

* Results are not too sensitive parameters

* Steps:
* solve for equilibria at a few times

 use coil/vessel/plasma dynamics to solve for
ohmic and vessel currents

* |ock vessel currents and ohmic currents and
repeat

* Recurrent neural networks show promise in
predicting these scalar parameters based on
actuators [I. Char, Carnegie Mellon University]
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Vertical stability analysis



Circuit dynamics model gives insight into vertical stability

* Shape model is based on circuit equation,
applied to toroidal elements in the tokamak

I = Al + Bv
Oota \
<M+ g31)1+31:v —> A=—(M+X)'R
B=(M+X)!

* Vertical instability is represented by a
positive eigenvalue of A

* Analytic theory indicates proportional-
derivative control is needed to stabilize

system unless elongation is low [Humphreys
1989, Lazarus 1990]

* Theory also suggests presence of right-half-
plane (RHP) transmission zeros
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Stabilizing region for vertical controller identified

* RHP zero in plasma position response is
exactly the RHP zero in the vacuum field Br
reSPONSE [Pesamosca 2021]

* On NSTX-U, the zero exists for PF1 and PF2 only
due to vessel shielding

* Fast timing (> 1kHz) suggests PF1 and PF2 are
still fast enough to be used for vertical control

* |dentified stable region for controller Kp,
Kd values
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Stabilizing region for vertical controller identified

* RHP zero in plasma position response is
exactly the RHP zero in the vacuum field Br
reSPONSE [Pesamosca 2021]

* On NSTX-U, the zero exists for PF1 and PF2 only
due to vessel shielding

e Fast timing (> 1.5kHz) suggests PF1 and PF2 are
still fast enough to be used for vertical control

* |dentified stable region for controller Kp,

Kd values
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Stabilizing region for vertical controller identified

* RHP zero in plasma position response is
exactly the RHP zero in the vacuum field Br
reSPONSE [Pesamosca 2021]

* On NSTX-U, the zero exists for PF1 and PF2 only
due to vessel shielding

e Fast timing (> 1.5kHz) suggests PF1 and PF2 are
still fast enough to be used for vertical control

* |dentified stable region for controller Kp,
Kd values
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Shape and current-tracking



Vertical instability introduces a RHP zero to the PF current control loop

>

e “Closing the vertical loop” results in a RHP zero
to the current/shape control loop

Fundamentally related to the vertical instability and
has same timescale (10-200 Hz)

In general, only solution is to reduce controller
agressiveness (bandwidth)
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The zero is a perturbation to the solution of (sl-A)=0, the poles of

A

The input zero direction (u0) is ~ the vertical control input direction b
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Numerical calculation of RHP zero shows alignment with vertical

instability

* Input direction u0 = null(G)
e Qutput direction y0 = null(G’)

* Force actuation to be orthogonal to input
zero direction, or force coil tracking errors
to be orthogonal to output zero direction

* Misalignment between input and output
zero directions indicates the VS controller
would improve by adding PF1/PF2.

Input Zero Direction

o ?((\P\) ?ﬂ\) ?(;3,\) o ?((g,\, ?(;;,\, ??\P\’

0.8 Output Zero Direction

-0.8 | L I | I I I |
> D N N % N N \
S ?Q‘\"‘ KT 2 0 D ?(,‘\P’

11



Full controller is based on current-following + shape error mapping

shape

. . shape targets , ~ ' ‘ measuremen

* Similar to the eXtreme Shape _(“’_,;f:;__ﬁ [Gé,,m,p}_. K { % = AgX + Byu H Gavay Fﬁ, ts
Controller at JET [Ariola 2005] |  shapecument m——o— |

controller VS Controller

* Dynamic performance is mostly a
function of the current controller

e current control dynamics

i =(A— BK)z

* shape dynamics
i=(A—-BKG'G)x
* flexibility: design dynamic response

independent of shape targets and
shape scenario
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Surprisingly, PID current-tracking performs on-par with MIMO methodsﬁ

* Highest coupling is between OH coil 018 | "PID =
and PF1AU/PF1AL which are directly
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Map from shape errors to currents is the “plasma response”

shape targets

* This map is equilibrium dependent,
linearization of the Grad-Shafranov
equation

* Precompute a-priori based on target equilibria

shape current
controller

~ Plasma + Coils +
VS Controller
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shape
measurements
—>

* Simpler “rigid” model is real-time capable
although not routinely used

* Use plasma response neural network
(Pertnet) [Wai 2022]
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Shape-to-current mapping can be used for constraints, including
feedforward

* On JET XSC shape-to-current mapping is regularized e
using SVD [Ariola 2005] calculations

* Only retain the first few singular values shape targets _

—

FF current targets

shape

'. . measurements
[G&l-&ll]T }—b K X=A x+B,u Gm.ay ‘——)
5 I T 5 shape current  ~ plasma + Coils +
— controller VS Controller

* Interpreting matrix inversion is intuitive for
including feedforward, some types of constraints

61 = argmin J(61) = ||6y) — GST||?

* Include weighting matrices, regularization, and
constraints

J=0I"HST + 2161 subject to:
min: _ T
H=dG WwG—l—WI Adl < b
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Nonlinear simulations performed using gsevolve (weiander 2019

* Recreate shot using original PCS controller

experiment-level disturbances and noise

undesired USN-LSN bobble occurs while
diverting

radial position oscillations

Ip oscillations (higher than actual
experiment)

NSTXU simulation
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Nonlinear simulations performed using gsevolve (weiander 2019

* Recreate shot using original PCS controller

experiment-level disturbances and noise

undesired USN-LSN bobble occurs while
diverting

radial position oscillations

Ip oscillations (higher than actual
experiment)

NSTXU simulation
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Nonlinear simulations performed using gsevolve weiander 2019

* Use feedforward method to design coil
current trajectories

» feedforward reduces PF1 currents while
diverting, removes USN/LSN switching
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Nonlinear simulations performed using gsevolve (weiander 2019

* Use feedforward method to design coil
current trajectories

» feedforward reduces PF1 currents while
diverting, removes USN/LSN switching

Coil trajectories
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Nonlinear simulations performed using gsevolve weiander 2019

* Design feedforward to divert the plasma

earlier (t=230ms =2 t=110ms)
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Nonlinear simulations performed using gsevolve (weiander 2019

* Design feedforward to divert the plasma
earlier (t=230ms = t=110ms)
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Summary

* Developed feedforward design tool and
compatible shape controller

* Improve integration with vertical stability
controller

e Simulation results show better control, new
capabilities (e.g. divert earlier)
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