

Feedforward + feedback shape control design on NSTXU

J. Wai¹, M.D. Boyer², W. Wehner³, A.S. Welander³, E. Kolemen^{1,2}

¹Princeton University, Princeton NJ, USA ²Princeton Plasma Physics Laboratory, Princeton NJ, USA ³Genearal Atomics, San Diego CA, USA

Motivation

- Goal: improve NSTX-U shape controller
- Previous controller experienced difficulties
 - oscillations, sensitivity to gains, loss of control
- Target upgrades:
 - Add feedforward capabilities and feedforward design tool
 - Improve integration with Ip-controller and vertical stability controller

[Boyer, 2018]

Feedforward trajectory design

Feedforward (FF) design tools maps target shapes to currents

- Method requires only target shapes and estimates of a few scalar plasma parameters
 - Inputs: target Ip, target shapes, estimated Te, estimated W_{th}, estimated li
 - Results are not too sensitive parameters

• Steps:

- solve for equilibria at a few times
- use coil/vessel/plasma dynamics to solve for ohmic and vessel currents
- lock vessel currents and ohmic currents and repeat
- Recurrent neural networks show promise in predicting these scalar parameters based on actuators [I. Char, Carnegie Mellon University]

Parameter predictions trained on heating & current drive actuators

Vertical stability analysis

• Shape model is based on circuit equation, applied to toroidal elements in the tokamak

$$\begin{pmatrix}
M + \frac{\partial \psi_{pla}}{\partial I}
\end{pmatrix} \dot{I} + RI = v$$

$$A = -(M + X)^{-1}R$$

$$B = (M + X)^{-1}$$

- Vertical instability is represented by a positive eigenvalue of A
- Analytic theory indicates proportionalderivative control is needed to stabilize system unless elongation is low [Humphreys 1989, Lazarus 1990]
- Theory also suggests presence of right-halfplane (RHP) transmission zeros

Zero: "values of s for which u and x are nonzero, but y is zero"

$$y(s) = G(s)u(s)$$
 $\dot{x} = Ax + Bu$ $y = Cx + Du$ $= \frac{n(s)}{d(s)}u(s)$ $\begin{bmatrix} sI - A & B \\ C & D \end{bmatrix}$ drops rank

Stabilizing region for vertical controller identified

- RHP zero in plasma position response is exactly the RHP zero in the vacuum field Br response [Pesamosca 2021]
 - On NSTX-U, the zero exists for PF1 and PF2 only due to vessel shielding
 - Fast timing (> 1kHz) suggests PF1 and PF2 are still fast enough to be used for vertical control
- Identified stable region for controller Kp, Kd values

Stabilizing region for vertical controller identified

- RHP zero in plasma position response is exactly the RHP zero in the vacuum field Br response [Pesamosca 2021]
 - On NSTX-U, the zero exists for PF1 and PF2 only due to vessel shielding
 - Fast timing (> 1.5kHz) suggests PF1 and PF2 are still fast enough to be used for vertical control
- Identified stable region for controller Kp, Kd values

Stabilizing region for vertical controller identified

- RHP zero in plasma position response is exactly the RHP zero in the vacuum field Br response [Pesamosca 2021]
 - On NSTX-U, the zero exists for PF1 and PF2 only due to vessel shielding
 - Fast timing (> 1.5kHz) suggests PF1 and PF2 are still fast enough to be used for vertical control
- Identified stable region for controller Kp, Kd values

Shape and current-tracking

Vertical instability introduces a RHP zero to the PF current control loop

- "Closing the vertical loop" results in a RHP zero to the current/shape control loop
 - Fundamentally related to the vertical instability and has same timescale (10-200 Hz)
 - In general, only solution is to reduce controller agressiveness (bandwidth)

$$null \begin{pmatrix} \begin{bmatrix} sI - A & B \\ C & D \end{bmatrix} \end{pmatrix}$$

$$\begin{bmatrix} sI_{n\times n} - A + (k_p + k_d s)B\hat{b}C_{zp} & B \\ [I_{m\times m} & 0_{m\times (n-m)}] & 0_{m\times m} \end{bmatrix} \begin{bmatrix} x_0 \\ u_0 \end{bmatrix} = 0$$

Gives approximately:

$$(sI - A + v(s, x_0))x_0 = 0$$

$$B[\alpha(s, x_0)\hat{b} + u_0] = 0$$

The zero is a perturbation to the solution of (sI-A)=0, the poles of A

The input zero direction (u0) is ~ the vertical control input direction b

Numerical calculation of RHP zero shows alignment with vertical instability

- Input direction u0 = null(G)
- Output direction y0 = null(G')
- Force actuation to be orthogonal to input zero direction, or force coil tracking errors to be orthogonal to output zero direction
- Misalignment between input and output zero directions indicates the VS controller would improve by adding PF1/PF2.

102

Full controller is based on current-following + shape error mapping

- Similar to the eXtreme Shape Controller at JET [Ariola 2005]
- Dynamic performance is mostly a function of the current controller
 - current control dynamics

$$\dot{x} = (A - BK)x$$

shape dynamics

$$\dot{x} = (A - BKG^{\dagger}G)x$$

 flexibility: design dynamic response independent of shape targets and shape scenario

- Highest coupling is between OH coil and PF1AU/PF1AL which are directly adjacent
- Apply a step reference change in Ip
 - PID tracking rejects disturbance ~ 30ms
 - LQI and LQR can give some improvements/tradeoffs

$$v = K_{LQI} \begin{bmatrix} x \\ \int e dt \end{bmatrix}$$

$$\dot{v} = K_{LQR} \begin{bmatrix} x \\ v \end{bmatrix}$$

Map from shape errors to currents is the "plasma response"

- This map is equilibrium dependent, linearization of the Grad-Shafranov equation
 - Precompute a-priori based on target equilibria
 - Simpler "rigid" model is real-time capable although not routinely used
 - Use plasma response neural network (Pertnet) [Wai 2022]

$$\delta\psi = G\delta I$$

$$\delta \psi = G \delta I$$

$$\delta I = G^{\dagger} \delta \psi$$

Plasma response to PF1AU 205062: 300ms

Shape-to-current mapping can be used for constraints, including feedforward

- On JET XSC shape-to-current mapping is regularized using SVD [Ariola 2005]
 - Only retain the first few singular values

$$\delta I = G^{\dagger} \delta \psi$$

 Interpreting matrix inversion is intuitive for including feedforward, some types of constraints

$$\delta I = \operatorname{argmin} |J(\delta I)| = ||\delta \psi - G\delta I||^2$$

Include weighting matrices, regularization, and constraints

$$J=\delta I^T H \delta I + 2f^T \delta I$$
 subject to: $H=G^T W_\psi G + W_I$ $A\delta I < b$ $f=G^T W_\psi \delta \psi$

- Recreate shot using original PCS controller
 - experiment-level disturbances and noise
 - undesired USN-LSN bobble occurs while diverting
 - radial position oscillations
 - Ip oscillations (higher than actual experiment)

- Recreate shot using original PCS controller
 - experiment-level disturbances and noise
 - undesired USN-LSN bobble occurs while diverting
 - radial position oscillations
 - Ip oscillations (higher than actual experiment)

:@图:

- Use feedforward method to design coil current trajectories
 - feedforward reduces PF1 currents while diverting, removes USN/LSN switching

- Use feedforward method to design coil current trajectories
 - feedforward reduces PF1 currents while diverting, removes USN/LSN switching

100

Nonlinear simulations performed using gsevolve [Welander 2019]

 Design feedforward to divert the plasma earlier (t=230ms → t=110ms)

Nonlinear simulations performed using gsevolve [Welander 2019]

 Design feedforward to divert the plasma earlier (t=230ms → t=110ms)

Summary

- Developed feedforward design tool and compatible shape controller
- Improve integration with vertical stability controller
- Simulation results show better control, new capabilities (e.g. divert earlier)

References

- A. Welander, "Closed-loop simulation with Grad-Shafranov equilibrium evolution for plasma control system development," *Fusion Engineering & Design*, 2019.
- D.A. Humphreys & I.H. Hutchinson, "Filamet circuit model analysis of Alcator C-MOD vertical stability", iNuclear Fusion, 1989.
- D.A. Humphreys, et al., "Development of ITER-relevant plasma control solutions at DIII-D," Nuclear Fusion 2007.
- E.A. Lazarus et al., "Control of the vertical instability in tokamaks", Nuclear Fusion, 1990.
- F. Pesamosca, "Model-based optimization of magnetic control in the TCV tokamak", EPFL Thesis 8316, 2021.
- J.T. Wai, et al., "Neural net modeling of equilibria in NSTX-U", Nuclear Fusion, 2022.
- M. Ariola & A. Pironti, "The design of the extreme Shape Controller for the JET tokamak,", IEEE Control, 2005.
- M.D. Boyer et al., "Plasma boundary shape control and real-time equilibrium reconstruction," Nuclear Fusion, 2018.